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Abstract X-ray line profile analysis is shown to be a

powerful tool to characterize the microstructure of

nanocrystalline materials in terms of grain and sub-

grain size, dislocation structure and dislocation densi-

ties and planar defects, especially stacking faults and

twin boundaries. It is shown that the X-ray method can

provide valuable complementary information about

the microstructure, especially when combined with

transmission electron microscopy and differential scan-

ning calorimetry.

Introduction

The characterization of nanostructured solids or nano-

crystalline materials comprises the description of

microstructure in terms of (i) grain size and (ii) lattice

defects. Grain size, in general, is routinely determined

by analyzing transmission electron microscopy (TEM)

micrographs. Looking more carefully at TEM micro-

graphs reveals, however, that grain size is often more

subtle than just the obvious boundary contours, cf. [1].

The orientation differences on the adjacent sides of the

grain boundary contrasts can vary between almost zero

and any other value. Overlapping grains within the thin

foil, especially in the case of the smallest grain size

regime, can produce apparent additional contrasts. On

the other hand, faint contrasts, especially when the

orientation differences are small, can escape grain

boundary counting. Still, TEM micrographs are

unavoidable for grain size determination. An alterna-

tive tool to determine grain size, particularly in the

submicron regime, is X-ray line broadening. It is being

used ever since the pioneering work of Scherrer in 1918

[2], who realized that the optical principles of X-ray

scattering are not so far from the principles of light

scattering. The shrinkage of a grating causes spreading

of diffraction spots, which we have all seen with naked

eyes during our basic physics courses. Today, with all

the sophisticated X-ray sources, diffractometers, detec-

tors and theories, we can do a lot more. Warren [3–5],

Wilson [6] and Bertaut [7] have started the art of X-ray

line profile analysis in the forties and fifties by showing

that lattice strain has considerable contribution to line

broadening and, if this is given due care, far more can

be derived about size and size-distribution than just the

Scherrer equation. Strain is frequently given as a

number related to the root-mean-square strain, <e2 > 1/2,

which is, on the one hand an unnecessary simplifica-

tion, on the other hand, physically incorrect, since the

root-mean-square strain is a strongly distance depen-

dent, at short distances singular quantity, cf. [8]. The

sources of strain can be (i) dislocations, (ii) grain

boundary triple junctions, (iii) contact or sinter

stresses, (iv) stacking faults, (v) coherency stresses,

and others, most of which can be physically well

modeled and derived explicitly from line profile

analysis. X-ray line profile analysis is, in general, an

averaging method. The illuminated volume is usually

many orders of magnitude larger than the volume

probed by a TEM micrograph. This feature gives an

excellent opportunity to gain different and comple-

mentary information by using both, the X-ray and
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TEM methods to describe microstructure. In the

present account the fundamental information provided

by the X-ray method is reviewed, and where possible,

the correlation with TEM observations is pointed out.

Fundamentals of X-ray line profile analysis

X-ray diffraction patterns of nanostructured solids or

nanocrystalline materials consist of broadened diffrac-

tion peaks. In the present context, information about

crystal structure and phase analysis are not considered.

Broadening is caused by smallness of crystallites and

strain. By the kinematical theory of scattering the

measured physical profile, IF
hklof the hkl Bragg reflec-

tion can be given as the convolution of the size and

strain profiles, IS
hkland ID

hkl, respectively [5]:

IF
hkl ¼ IS

hkl � ID
hkl ð1Þ

If stacking faults or twinning are significant lattice

defect in the material, the equation can be extended by

the profiles corresponding to stacking faults or twin

boundaries, ISF
hkl [9]:

IF
hkl ¼ IS

hkl � ID
hkl � ISF

hkl ð2Þ

The detailed expressions of the three different

profile functions, IS
hkl, ID

hkl and ISF
hkl, were derived and

modeled in different ways in the various methods and

procedures of line profile analysis. In the following

these are surveyed with special reference to nanocrys-

talline materials.

Grain size, subgrain size

The size profile is the sum of the intensities diffracted by

parallel and independent columns aligned normal to the

reflecting planes with unit cross sectional area. The

diffraction peak corresponding to a particular column is

the squared Fourier transform of the form-factor of that

column in the direction parallel to the diffraction vector

[7]. The size profile, IS
hklwill be the volume-weighted sum

of the individual peaks corresponding to the individual

columns. Its physical meaning is related to the area or

volume weighted column-length distribution in the

specimen, where the two different weightings are

directly connected to the Fourier transforms or the

integral breadths of the size profile, respectively [7]. Krill

and Birringer [10] have shown that the two weightings

can also be directly related to two different momentums

of the Fourier transforms of IS
hkl. The column-length

distribution in the specimen depends on the size, the

shape and the size distribution of the crystallites. It has to

be noted, however, that different crystallite shapes and

size-distributions can have the same column-length

distribution, which means that the correlation between

column-length distribution and crystallite shapes and

size-distributions is not unique. Therefore, in order to

obtain the mean size of crystallites and/or their size-

distributions, assumptions have to be made about the

shape and the specific functional form of size-distribu-

tion, cf. [11–13]. Here we note that for testing assump-

tions about size distribution functions Langford and

coworkers [13] have studied the size and size-distribu-

tion in loose nanopowders with minimal strain, espe-

cially in ball milled and compacted ceria powders. The

log-normal size distribution function, f(x), given by the

median m and the variance r, has been shown to describe

size-distribution in a wide range of bulk or loose powder

materials, cf. [10–16]. Hinds [17] has shown that the

arithmetic-, the area- and the volume-weighted mean

crystallite diameters can be given with m and r:

\x[j ¼ mexpðkr2Þ ð3Þ

where j means arithmetic-, area- or volume-weight-

ing and k = 0.5, 2.5 and 3.5 for the different averaging,

respectively. The explicit form of the size profile, IS
hklor

its Fourier transform, as it is used in the multiple whole

profile (MWP) or convolutional multiple whole profile

(CMWP) fitting procedures, can be found in [18–20].

One of the first concomitant determination of the

size distribution function by TEM and X-ray line

profile analysis was done by Krill and Birringer on ball

milled and compacted nanocrystalline palladium [10].

The size Fourier coefficients were determined by the

Warren–Averbach method using the {111} and {222}

reflections. It was shown that the intercept of the initial

slope and the integral of the size Fourier coefficients

give the area and volume weighted mean crystallite

size, respectively, and from these two mean values the

median and the variance of the log normal size

distribution function were evaluated. Figure 1 shows

a good correlation between the TEM counting and the

log normal size distribution function determined from

X-ray diffraction. In ball milled and subsequently

sintered Tungsten–Carbide the size distribution of

crystallites was determined by TEM counting and X-

ray diffraction [12]. The good correlation between the

two size distributions is shown in Fig. 2. Here the

median and the variance of the log normal size

distribution function were evaluated from the full

width at half maximum (FWHM), the integral breadths
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and the size Fourier coefficients of all measured Bragg

reflections, where strain anisotropy was taken care of

by the dislocation contrast factors, cf. [21, 22]. The

more reliable and robust method of whole profile

fitting procedure, MWP [17, 18] was applied to

determine the size distribution in inert gas condensed

and subsequently compacted nanocrystalline copper

[23–25]. Figure 3 shows typical log normal size distri-

bution functions obtained by TEM counting and X-ray

diffraction, respectively. Both, the TEM and the X-ray

data suggest, in good correlation with each other, that

nanocrystalline copper may reveal spontaneous grain

growth at room temperature, well below temperatures

of recovery or recrystallisation.

In the case of nanostructured materials produced by

different modes of severe plastic deformation (SPD),

e.g. equal channel angular pressing (ECAP), high

pressure torsion (HPT) or ball milling and subsequent

compaction, the grain size determined by TEM count-

ing or X-ray diffraction reveal an apparent discrep-

ancy. Usually, TEM counting provides a larger average

grain size than X-ray diffraction. Figure 4 shows a

comparison of the average grain size determined by

TEM counting, <d>TEM, versus the area average mean

crystallite size given by X-ray diffraction, <x>area, X-ray

(for the data in the figure see [14, 19, 23–30]). The

figure shows that, in the case of the copper specimens

prepared by inert gas condensation and compaction

and a few specimens prepared by SPD methods,

especially in the smallest grain size regime, there is a

good correlation between TEM counting and X-ray

diffraction. The one-to-one correlation is indicated by

the dash-dotted line of unit slope. However, in the case

of most of the specimens prepared by SPD methods

the TEM counting gives larger average grain size than

X-ray diffraction. This is even true in the smaller grain

size regime, as shown in Fig. 4b. The dashed line in

Fig. 4a is only for the purpose of guiding the eye. The

reason for this apparent discrepancy is that the size

provided by X-ray diffraction corresponds to the

average of the smallest undistorted regions in the

material, whereas TEM counting is related to regions

separated by more-or-less sharp contours in the TEM

micrograph. One possible explanation for the discrep-

ancy would be that when dislocations are arranged in a

configuration which causes small orientation differ-

ences between two adjacent regions, the X-ray size

corresponds to the two separate regions, whereas in the

TEM micrograph the two regions may seem to

correspond to the same grain, therefore the boundary

Fig. 1 Correlation between the TEM counting (histogram and
dashed line) and the log normal size distribution function (solid
line) determined from X-ray diffraction for inert gas condensed
and conpacted Pd. The X-ray size distribution was determined by
analysing the size Fourier coefficients of the profiles of the {111}
and {222} Bragg reflections. (By courtecy of Professor C. E. Krill,
see also ref. [10])
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Fig. 2 Correlation between the TEM counting (histogram) and
the log normal size distribution function (solid line) determined
from X-ray diffraction for ball milled and sintered WC. The X-ray
size distribution was obtained by using the modified Williamson-
Hall and modified Warren-Averbach methods [12, 21]

Fig. 3 Size distribution of nanocrystalline grains in inert gas
condensed and subsequently compacted nanocrystalline copper
determined by TEM counting (open circles with solid line, and
open triangles with dash-dotted line) and X-ray diffraction
(dotted, and dashed lines), respectively [23–25]. The X-ray size
distribution was assumed to be log-normal
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between them is not taken as grain boundary, cf [31].

These dislocation configuration can be considered as

small-angle grain-boundary (SAGB) configurations.

The corresponding smallest regions are subgrains

separated by subboundaries of SAGB type. Hellmig

and coworkers [1] have systematically investigated the

grain and subgrain size distribution and the orientation

conditions between them in copper specimens

deformed by ECAP. They found that there are

distinctly different grain size distributions which can

be classified according to the orientation differences

between adjacent grains or subgrains. Especially, it was

found that there is a considerable volume fraction of

subgrains separated by subboundaries on the two sides

of which the orientation differences are close to zero.

Encouraged by this finding the effect of subboundaries

with dipolar dislocation configuration was investigated

in [32]. It was shown that when a subboundary consists

of a dipolar dislocation-wall (DiDW) the lattice planes

on either side of such a wall are shifted toward each

other, where this shift varies randomly from subgrain

to subgrain, between zero and b/2, where b is the

Burgers vector. This spatially random shift causes a

random phase shift of the X-rays scattered by the

adjacent subgrains. This means that subgrains sepa-

rated by subboundaries of DiDW type are also

coherently scattering domains, just as the subgrains

separated by SAGB type subboundaries. The two

models, i.e. the SAGB and the DiDW model of

subgrain boundaries, provide together a physically

well established basis for the assumption that size and

size-distributions determined by X-ray diffraction cor-

respond to subgrains or dislocation cells. Obviously, if

the subgrains or the dislocation cells and the grains are

identical, then the TEM and X-ray size data can be

identical. This happens in the case of the inert gas

condensed and compacted copper specimens in which

there are no subgrains but just grains separated mainly

by large angle grain boundaries. It has to be noted here

that in a real material neither the SAGB type nor the

DiDW type subboundaries will be perfectly of one

type. There may be some dislocation dipoles in the

SAGBs or uncompensated excess dislocations in a

DiDW type subboundaries. Real subboundaries will

probably be once closer to SAGB or in other cases

closer to DiDW type.

Microstrains and dislocations

Microstrains are one of the major source of lattice

distortion in nanostructured materials. They are caused

by (i) dislocations, (ii) triple junctions of grain or

subgrain boundaries, (iii) contact or sinter stresses, and

(iv) to some extent by planar defects, especially

stacking faults and twin boundaries. The strain fields

of dislocations, triple junctions and contact stresses are

usually heterogeneous and of long range character, i.e.

the deformation decays as the reciprocal distance, cf.

[8, 33, 34]. Basically they cause X-ray line broadening

without line shift, where the broadening increases with

diffraction order, cf. [5]. The increase is, however, not

monotonous, but it varies with hkl in a strict correla-

tion with the (a) elastic anisotropy of the materials, cf.

[33, 35–38] and (b) the specific types and species of

lattice defects, cf. [18], and the phenomenon is called

strain anisotropy [39]. Since the spatial dependence of
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Fig. 4 Average grain size determined by TEM, <d>TEM, versus
the area average mean crystallite size, <x>area, X-Ray, determined
by X-ray analysis for ECAP deformed Cu (open circles [26]),
inert gas condensed and compacted Cu (open square [23–25,27]),
severe plastic deformed Ni (open up-triangle [28]), ECAP
deformed Al-Mg (open down-triangle [29]), ECAP deformed
Ti (open star [29]), electrodeposited Ni (cross [28]), and ECAP
deformed Cu (half full circle [14,19]). Figure (b) is the blown up
lower-left corner region of figure (a). The vertical line in figure
(a) indicate the experimental errors
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the deformation corresponding to the three major

types of lattice defects, i.e. dislocations, triple junctions

and contact stresses, is not distinctly different, one has

to satisfy with the analysis of dislocations as one of the

prototypes of the source of microstrain. It can be

shown that other sources of microstresses can be

quantified in terms of dislocation properties, cf. [40].

The Fourier transform of the strain profile, ID
hkl, can be

best given by the Wilkens function, f(g) [8]:

AD
hkl ¼ exp �2p2L2g2\e2

g;L[
h i

¼ exp �2p2L2g2ðb=2pÞ2pqCf ðgÞ
h i

ð4Þ

where <eg,L
2 > is the mean square strain, mentioned

before, L is the Fourier variable, a distance in the

crystal, g is the absolute value of the diffraction vector

g, b is the absolute value of the Burgers vector of

dislocations, q is the dislocation density, C is the

contrast (or orientation) factor of dislocations, g = L/Re,

Re is the effective outer cut-off radius of dislocations

and \e2
g;L[ ¼ ðb=2pÞ2pqCf ðgÞ. The specific value of

Re can only be interpreted physically together with the

value of q. For this purpose Wilkens introduced the

dimensionless quantity M ¼ Re
ffiffiffi
q
p

[8, 41]. The value

of M is smaller or larger than unity as (i) the profile

tails are longer or shorter, (ii) as the average exponent

in the DK dependence of the asymptotic behavior of

the tails of profiles is closer to –3 or –2, (iii) as the

screening of strain fields of dislocations is stronger or

weaker and (iv) as the dipole character of dislocations

is stronger or weaker, respectively. All formulations in

(i) to (iv) have the same physical meaning.

Strain anisotropy

The non-monotonous variation of X-ray line broaden-

ing with hkl was observed by Stokes and Wilson in the

nineteen forties [42]. In powder diffraction crystallog-

raphy it is known as strain anisotropy [39]. It means

that neither the breadths nor the Fourier coefficients of

diffraction profiles are monotonous functions of the

diffraction angle or g. Several authors have shown that

as long as crystal defects, especially dislocations, do not

break the crystal symmetry, strain anisotropy can be

scaled in terms of the elastic anisotropy of the crystal,

i.e. either in terms of the anisotropic elastic constants,

Ehkl, cf. [38, 43] or in terms of the fourth order

invariants of the hkl indices, cf. [33, 42]. It can be shown

that the two representations are equivalent [44, 45].

Crystal defects, in particular dislocations, do not break

the crystal symmetry as long as the Burgers vectors and

the slip systems are randomly populated, i.e. as long as

their strain field can be averaged over the permutations

of the hkl indices. It was shown that in these particular

cases the contrast (or orientation) factors of dislocations,

C(hkl,cijkl) (where cijkl are the elastic constants of the

crystal), can be averaged over the permutations of the

hkl indices, and that the average dislocation contrast

factors, C, will be linear functions of the fourth order

invariants of the hkl indices [22]. In particular, for cubic

and hexagonal crystals the average dislocation contrast

factors are [22, 46]:

C ¼ Ch00ð1� qH2Þ; ð5Þ

and

Chk:l = Chk:0 [1 + q1x + q2x2], ð6Þ

respectively, where Ch00 is the average dislocation

contrast factor of the h00 type reflections and

H2 = (h2k2 + h2l2 + k2l2)/(h2 + k2 + l2)2. The values of

Ch00 and the q parameter can be obtained numerically

for different dislocation types as functions of the elastic

properties of a crystal [47]. In (6) Chk:0 is the average

dislocation contrast factor of the hk.0 type reflections,

x = (2/3)(l/ga)2, where a is the lattice constant in the

basal plane, and q1 and q2 are numerical constants

depending on the Burgers vector type and elastic

constants of the crystal. The values of Ch00, q, and

Chk:0, q1 and q2 are compiled in [47, 48] and [46],

respectively. In [47, 48] it was shown that the q

parameter is different for different Burgers vector

types, and for edge or screw dislocations in cubic

crystals. The typical behavior of the q parameter in fcc

crystals for the a/2 <110>{111} slip system as a function

of the Zener constant, AZ = 2c44/(c11–c12), is shown in

Fig. 5. It can be seen that the q parameter values are

very different for edge or screw dislocations. It is also

found that in the case of screws they are independent,

and for edges they slightly depend of the c12/c44 ratio,

as indicated in the figure. The solid lines are polyno-

mial curves fitted to the numerically calculated values

shown as open symbols. In [46] it was shown that the q1

and q2 parameters are different for different slip

systems in hexagonal crystals. The variation of the q,

and q1 and q2 parameters with different Burgers vector

and slip system types can be considered as a weak

violation of crystal symmetry. This means that the

linearity of the average dislocation contrast factors

with the fourth order invariants of the hkl indices is still

maintained, but the coefficients in the linear function
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vary with the Burgers vector and slip system types. A

strong violation of crystal symmetry can be observed if

single crystals or single grains with specific dislocations

are analyzed by X-ray diffraction, cf. [49, 50]. The

discussion of this effect is out of the frame of the

present account.

Application to specific nanostructured materials

The potentials of X-ray line profile analysis in charac-

terizing nanostructured materials is shown by the

example of ball milled Al and two Al–Mg alloys [20].

High-purity Al powder and 3 and 6 wt.% high-purity

Mg chips were mechanically alloyed in a Spex8000

shaker miller at room temperature for 3 h [51]. X-ray

diffraction patterns were measured in a Philips X’pert

powder diffractometer using CuKa radiation and

secondary graphite monochromator. In order to have

good counting statistics the data collection was carried

for 30 h at 40 kV and 30 mA X-ray tube power.

The instrumental pattern was obtained by a NIST

SRM660a LaB6 peak profile standard material. The

measured diffraction pattern corresponding to the Al-3

wt%Mg alloy after 3 h milling period is shown in Fig. 6

by open circles. The evaluation was carried out by

the CMWP procedure for the dislocation density and

arrangement parameters, q and M, the median and the

variance in the log-normal size distribution function, m

and r, and the q parameter for strain anisotropy. The

theoretical pattern, which is the convolution of the size

and strain profiles and the measured instrumental

pattern plus the background intensity, is shown in

Fig. 6 as a solid line. Note the logarithmic intensity

scale which enables to see the intensity distribution

also in the lower intensity regions. The physical

parameters provided by the CMWP procedure are

shown in Fig. 7. In Fig. 7a it can be seen that the stored

dislocation density increases by about a factor of ten as

the Mg content increases to 6 wt%. Concomitantly the

average subgrain size and the value of m are decreasing

by a factor of three. Figure 7b shows that the values of

M decreases, whereas that of q increases with Mg

content. The log-normal size distribution functions in

the pure Al and the Al-6 wt%Mg specimen are shown

in Fig. 7c. The size distributions and the m and <x>area

values in Fig. 7a are in good correlation. The data can

be summarized as follows. With increasing Mg content

more dislocations are stored, probably because dynam-

ical recovery is strongly hindered by solute Mg. Here

we note that after 3 h ball milling the entire 6 wt% Mg

was found to be in solid solution [51]. For the same

reason, dynamic grain growth during ball milling is

hampered with increasing Mg. The Zener constant of

Al is AZ @ 1.3(±0.04). With this value, from Fig. 5 it

can be seen that for edge and screw dislocations

q = 0.6(±0.05) and q = 1.6(±0.05), respectively. The

measured values decrease with Mg content form about

q = 1.3(±0.2)–q = 0.7(±0.2). This means that in pure

Al and the Al-3 wt%Mg alloys the dislocation charac-

ter is average between edge and screw, or perhaps,

somewhat closer to screw character. In the Al-6

wt%Mg alloy, however, edge dislocation character is
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Fig. 6 The mesured (open circles) and fitted (solid line)
diffraction pattern corresponding to the Al-3 wt%Mg alloy after
3 h milling period, cf [20]. Only each 5th measured point (open
circle) is shown in the figure. Note the logarithmic intensity scale
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dominating. This latter is in good correlation with the

extremely high dislocation density, q @ 1016 m-2, where

the annihilation of screw dislocations is more likely.

The increase of the M parameter indicates that the

dislocation arrangement is becoming more random

with increasing Mg content. These results are in

correlation with TEM observations in Al and Al–Mg

alloys deformed by the method of ECAP [29].

The thermal stability of the microstructure was

followed by combining X-ray line profile analysis and

differential scanning calorimetric (DSC) investigations

in Al alloys [52], and pure copper [26, 53] and titanium

[54] deformed by HPT or ECAP, respectively. Figure 8

shows the heat flow, the dislocation density, q, and the

area average mean crystallite size as a function of

annealing temperature in an Al–Mg–Sc–Zr alloy

deformed by 15 rotations in HPT [52]. The heat flow

was measured in the scanning mode, whereas the

other two parameters were measured after 10 min

annealing at each indicated temperature. It can be seen

that the dislocation density annihilates almost com-

pletely while the crystallite size is still unchanged at

450 K (177 �C), indicating that the disappearance of

dislocations precedes grain growth in this alloy. The

thermal stability of the microstructure in Cu deformed

by 8 ECAP passes is shown in Fig. 9 [26, 53]. The

dislocation density decreases gradually and drops to

q = 5 · 1013 m–2 at 530 K (257 �C). Here the decrease

of q and the increase of <x>area occur together. At the

T = 510 K (237 �C), indicated by the vertical arrow,

abnormal grain growth produces a bimodal grain

structure with regions completely recrystallized, and

embedded in regions with the original nanostructure.

This is the bimodal structure reported by Ma and

coworkers [55] and Kuzel and coworkers [56]. In this

state of the material the diffraction peaks are the sum

of two peaks with very different widths, see Fig. 4 in

[26], which were not evaluated quantitatively.

Figure 10 shows the heat flow, the dislocation density,
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q, and the volume average mean crystallite size, <x>vol,

in Ti deformed by eight ECAP passes at 400–450 �C in

the Bc mode, as a function of temperature [54]. It can

be seen that the dislocation density decreases gradually

with temperature until it reaches a value of about

q = 5 · 1013 m–2 at the recrystallization temperature.

However, the average crystallite size remains almost

constant up to about 800 K (527 �C), indicating that in

Ti grain growth starts at higher temperatures than

dislocation annihilation.

Stacking faults and twin boundaries

Twinning has been observed to be an alternative

mechanism of plastic deformation in even high stack-

ing fault materials as Al or Cu when the grain size

becomes small enough, cf. [23–25, 27, 57–59]. The

effect of stacking faults and twinning was first treated

by Warren in the 1950s [5]. Using the method of series

expansions and approximations Warren has shown that

stacking faults or twin boundaries can be incorporated

into the Fourier method of line profile analysis by

introducing an apparent particle size which is a

reduced version of the true particle size, where the

reduction is caused by the planar defects. Warren

calculated hkl dependent numerical factors. The hkl

dependent reduction of the true particle size can be

given by these numerical factors proportional to the

density of planar defects. Warren’s other result is still

more relevant to the effect of planar defects. Describ-

ing the fcc crystal system by hexagonal coordinates,

where l is perpendicular to the close packed planes,

Warren has shown that there are two groups of hkl

indices for which the planar faults affect the diffraction

profiles in different ways: (i) if h–k = 3m, the planar

faults do not effect line profiles, where m is an arbitrary

integer, and (ii) if h–k „ 3m the planar faults cause

line broadening and shifts. The conditions of Warren in

the hexagonal system can be reformulated in the cubic

system as: (i) if h + k + l = 3m the planar defects do

not affect the diffraction sub-profiles, (ii) if, however,

h + k+ l „ 3m, the diffraction sub-profiles broaden

and/or are shifted. In a recent work a systematic

numerical procedure has been developed to evaluate

the density of planar defects together with dislocations

and crystallite (or subgrain) size in fcc crystals [9].

Powder diffraction patterns have been calculated

numerically by using the DIFFaX software [60] for

intrinsic and extrinsic stacking faults, and twin bound-

aries for the first 15 Bragg reflections up to 20% fault

density. A typical profile of the {422} Bragg reflection

corresponding to 10% intrinsic stacking faults together

with the constituting sub-profiles is shown in Fig. 11. It

can be seen that, depending on the particular hkl

values the sub-profiles are broadened and shifted to

different extent. In [9] it was found that the Bragg

reflections consist of five sub-reflection types, which

can be categorized by specific selection rules for the hkl

indices in accordance with the theory of Warren. The

FWHM and the positions of some 15,000 sub-reflec-

tions have been parameterized in a concise manner and

incorporated into the CMWP method. The eCMWP

method, extended to evaluate planar defects was

applied to determine the twin density in inert gas
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condensed and severely deformed copper and Cu–Zn

alloys, respectively [9, 61]. It was found that in pure

copper twinning becomes an essential alternative to

dislocation activity when the grain size becomes

smaller than about 40 nm, in good correlation with

[57–59, 62, 63]. In HPT deformed Cu–Zn alloys

twinning was observed to increase with plastic defor-

mation [61], in agreement with TEM observations [64].

Conclusions

It is shown that X-ray line profile analysis is a powerful

tool to characterize the microstructure of nanocrystal-

line materials in terms of (i) grain size, (ii) subgrain

size, (iii) size distributions, (iv) dislocation densities,

(v) dislocation character and arrangement, and (vi)

stacking faults and twin boundaries. A systematic

analysis of TEM and X-ray crystallite size shows that

the X-ray size, especially in the case of nanostructural

materials produced by plastic deformation, provides

the average subgrain size and size distribution. The X-

ray method is unlimited for the determination of

dislocation densities in the upper dislocation density

region. The thermal stability of nanostructural mate-

rials can be well determined by the X-ray method. It

has been shown that in Ti the dislocation density

decreases gradually with temperature, whereas the

average crystallite size remains stable up to the

recrystallization temperature. A systematic analysis

has shown that stacking faults and twinning causes a

different anisotropy in line broadening versus the hkl

indices as compared to dislocations, which enables the

determination of the densities of planar defect and

dislocations at the same time.
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